559 research outputs found

    Role of scattering in virtual source array imaging

    Full text link
    We consider imaging in a scattering medium where the illumination goes through this medium but there is also an auxiliary, passive receiver array that is near the object to be imaged. Instead of imaging with the source-receiver array on the far side of the object we image with the data of the passive array on the near side of the object. The imaging is done with travel time migration using the cross correlations of the passive array data. We showed in [J. Garnier and G. Papanicolaou, Inverse Problems {28} (2012), 075002] that if (i) the source array is infinite, (ii) the scattering medium is modeled by either an isotropic random medium in the paraxial regime or a randomly layered medium, and (iii) the medium between the auxiliary array and the object to be imaged is homogeneous, then imaging with cross correlations completely eliminates the effects of the random medium. It is as if we imaged with an active array, instead of a passive one, near the object. The purpose of this paper is to analyze the resolution of the image when both the source array and the passive receiver array are finite. We show with a detailed analysis that for isotropic random media in the paraxial regime, imaging not only is not affected by the inhomogeneities but the resolution can in fact be enhanced. This is because the random medium can increase the diversity of the illumination. We also show analytically that this will not happen in a randomly layered medium, and there may be some loss of resolution in this case.Comment: 22 pages, 4 figure

    Array imaging of localized objects in homogeneous and heterogeneous media

    Get PDF
    We present a comprehensive study of the resolution and stability properties of sparse promoting optimization theories applied to narrow band array imaging of localized scatterers. We consider homogeneous and heterogeneous media, and multiple and single scattering situations. When the media is homogeneous with strong multiple scattering between scatterers, we give a non-iterative formulation to find the locations and reflectivities of the scatterers from a nonlinear inverse problem in two steps, using either single or multiple illuminations. We further introduce an approach that uses the top singular vectors of the response matrix as optimal illuminations, which improves the robustness of sparse promoting optimization with respect to additive noise. When multiple scattering is negligible, the optimization problem becomes linear and can be reduced to a hybrid-â„“1\ell_1 method when optimal illuminations are used. When the media is random, and the interaction with the unknown inhomogeneities can be primarily modeled by wavefront distortions, we address the statistical stability of these methods. We analyze the fluctuations of the images obtained with the hybrid-â„“1\ell_1 method, and we show that it is stable with respect to different realizations of the random medium provided the imaging array is large enough. We compare the performance of the hybrid-â„“1\ell_1 method in random media to the widely used Kirchhoff migration and the multiple signal classification methods

    Illumination strategies for intensity-only imaging

    Full text link
    We propose a new strategy for narrow band, active array imaging of localized scat- terers when only the intensities are recorded and measured at the array. We consider a homogeneous medium so that wave propagation is fully coherent. We show that imaging with intensity-only measurements can be carried out using the time reversal operator of the imaging system, which can be obtained from intensity measurements using an appropriate illumination strategy and the polarization identity. Once the time reversal operator has been obtained, we show that the images can be formed using its singular value decomposition (SVD). We use two SVD-based methods to image the scatterers. The proposed approach is simple and efficient. It does not need prior information about the sought image, and guarantees exact recovery in the noise-free case. Furthermore, it is robust with respect to additive noise. Detailed numerical simulations illustrate the performance of the proposed imaging strategy when only the intensities are captured

    Statistical stability in time reversal

    Full text link
    When a signal is emitted from a source, recorded by an array of transducers, time reversed and re-emitted into the medium, it will refocus approximately on the source location. We analyze the refocusing resolution in a high frequency, remote sensing regime, and show that, because of multiple scattering, in an inhomogeneous or random medium it can improve beyond the diffraction limit. We also show that the back-propagated signal from a spatially localized narrow-band source is self-averaging, or statistically stable, and relate this to the self-averaging properties of functionals of the Wigner distribution in phase space. Time reversal from spatially distributed sources is self-averaging only for broad-band signals. The array of transducers operates in a remote-sensing regime so we analyze time reversal with the parabolic or paraxial wave equation

    Large deviations for a mean field model of systemic risk

    Full text link
    We consider a system of diffusion processes that interact through their empirical mean and have a stabilizing force acting on each of them, corresponding to a bistable potential. There are three parameters that characterize the system: the strength of the intrinsic stabilization, the strength of the external random perturbations, and the degree of cooperation or interaction between them. The latter is the rate of mean reversion of each component to the empirical mean of the system. We interpret this model in the context of systemic risk and analyze in detail the effect of cooperation between the components, that is, the rate of mean reversion. We show that in a certain regime of parameters increasing cooperation tends to increase the stability of the individual agents but it also increases the overall or systemic risk. We use the theory of large deviations of diffusions interacting through their mean field
    • …
    corecore